Skip to main content

Anthropic

LiteLLM supports all anthropic models.

  • claude-3.5 (claude-3-5-sonnet-20240620)
  • claude-3 (claude-3-haiku-20240307, claude-3-opus-20240229, claude-3-sonnet-20240229)
  • claude-2
  • claude-2.1
  • claude-instant-1.2
info

Anthropic API fails requests when max_tokens are not passed. Due to this litellm passes max_tokens=4096 when no max_tokens are passed.

API Keys​

import os

os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

Usage​

import os
from litellm import completion

# set env - [OPTIONAL] replace with your anthropic key
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

messages = [{"role": "user", "content": "Hey! how's it going?"}]
response = completion(model="claude-3-opus-20240229", messages=messages)
print(response)

Usage - Streaming​

Just set stream=True when calling completion.

import os
from litellm import completion

# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

messages = [{"role": "user", "content": "Hey! how's it going?"}]
response = completion(model="claude-3-opus-20240229", messages=messages, stream=True)
for chunk in response:
print(chunk["choices"][0]["delta"]["content"]) # same as openai format

OpenAI Proxy Usage​

Here's how to call Anthropic with the LiteLLM Proxy Server

1. Save key in your environment​

export ANTHROPIC_API_KEY="your-api-key"

2. Start the proxy​

$ litellm --model claude-3-opus-20240229

# Server running on http://0.0.0.0:4000

3. Test it​

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "claude-3",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'

Supported Models​

Model NameFunction Call
claude-3-haikucompletion('claude-3-haiku-20240307', messages)
claude-3-opuscompletion('claude-3-opus-20240229', messages)
claude-3-5-sonnetcompletion('claude-3-5-sonnet-20240620', messages)
claude-3-sonnetcompletion('claude-3-sonnet-20240229', messages)
claude-2.1completion('claude-2.1', messages)
claude-2completion('claude-2', messages)
claude-instant-1.2completion('claude-instant-1.2', messages)
claude-instant-1completion('claude-instant-1', messages)

Advanced​

Usage - Function Calling​

info

LiteLLM now uses Anthropic's 'tool' param 🎉 (v1.34.29+)

from litellm import completion

# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="anthropic/claude-3-opus-20240229",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

Forcing Anthropic Tool Use​

If you want Claude to use a specific tool to answer the user’s question

You can do this by specifying the tool in the tool_choice field like so:

response = completion(
model="anthropic/claude-3-opus-20240229",
messages=messages,
tools=tools,
tool_choice={"type": "tool", "name": "get_weather"},
)

Parallel Function Calling​

Here's how to pass the result of a function call back to an anthropic model:

from litellm import completion
import os

os.environ["ANTHROPIC_API_KEY"] = "sk-ant.."


litellm.set_verbose = True

### 1ST FUNCTION CALL ###
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
]
try:
# test without max tokens
response = completion(
model="anthropic/claude-3-opus-20240229",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

messages.append(
response.choices[0].message.model_dump()
) # Add assistant tool invokes
tool_result = (
'{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}'
)
# Add user submitted tool results in the OpenAI format
messages.append(
{
"tool_call_id": response.choices[0].message.tool_calls[0].id,
"role": "tool",
"name": response.choices[0].message.tool_calls[0].function.name,
"content": tool_result,
}
)
### 2ND FUNCTION CALL ###
# In the second response, Claude should deduce answer from tool results
second_response = completion(
model="anthropic/claude-3-opus-20240229",
messages=messages,
tools=tools,
tool_choice="auto",
)
print(second_response)
except Exception as e:
print(f"An error occurred - {str(e)}")

s/o @Shekhar Patnaik for requesting this!

Usage - Vision​

from litellm import completion

# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

def encode_image(image_path):
import base64

with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")


image_path = "../proxy/cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
resp = litellm.completion(
model="anthropic/claude-3-opus-20240229",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
print(f"\nResponse: {resp}")

Usage - "Assistant Pre-fill"​

You can "put words in Claude's mouth" by including an assistant role message as the last item in the messages array.

[!IMPORTANT] The returned completion will not include your "pre-fill" text, since it is part of the prompt itself. Make sure to prefix Claude's completion with your pre-fill.

import os
from litellm import completion

# set env - [OPTIONAL] replace with your anthropic key
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

messages = [
{"role": "user", "content": "How do you say 'Hello' in German? Return your answer as a JSON object, like this:\n\n{ \"Hello\": \"Hallo\" }"},
{"role": "assistant", "content": "{"},
]
response = completion(model="claude-2.1", messages=messages)
print(response)

Example prompt sent to Claude​


Human: How do you say 'Hello' in German? Return your answer as a JSON object, like this:

{ "Hello": "Hallo" }

Assistant: {

Usage - "System" messages​

If you're using Anthropic's Claude 2.1, system role messages are properly formatted for you.

import os
from litellm import completion

# set env - [OPTIONAL] replace with your anthropic key
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

messages = [
{"role": "system", "content": "You are a snarky assistant."},
{"role": "user", "content": "How do I boil water?"},
]
response = completion(model="claude-2.1", messages=messages)

Example prompt sent to Claude​

You are a snarky assistant.

Human: How do I boil water?

Assistant: